At first download the Heart Disease Dataset from Kaggle: https://www.kaggle.com/ronitf/heart-disease-uci. Following, you should put the dataset in google drive. Then Using Google Colab you can run the following Support Vector Machine code:
!pip install -U -q PyDrive
from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from google.colab import auth
from oauth2client.client import GoogleCredentials
# Authenticate and create the PyDrive client.
auth.authenticate_user()
gauth = GoogleAuth()
gauth.credentials = GoogleCredentials.get_application_default()
drive = GoogleDrive(gauth)
link =
'https://drive.google.com/file/d/1OglM8GvGIiVMMUXAchljXc86RtOq9K02
/view?usp=sharing'
import pandas as pd
import numpy as np
# to get the id part of the file
id = link.split("/")[-2]
downloaded = drive.CreateFile({'id':id})
downloaded.GetContentFile('heart.csv')
df = pd.read_csv('heart.csv')
X = df.drop('target', axis=1)
y = df['target']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.30)
from sklearn.svm import SVC
svclassifier = SVC(kernel='linear')
svclassifier.fit(X_train, y_train)
y_pred = svclassifier.predict(X_test)
from sklearn.metrics import confusion_matrix, classification_report
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
from sklearn import metrics
print("Accuracy:",
metrics.accuracy_score(y_test, y_pred))
print("Precision:",
metrics.precision_score(y_test, y_pred))
print("Recall:",
metrics.recall_score(y_test, y_pred))
print("F1 Score:",metrics.f1_score(y_test, y_pred))
print('Mean Absolute Error:',
metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:',
metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:',
np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
Output: